Abstract

Black-box complexity theory provides lower bounds for the runtime of black-box optimizers like evolutionary algorithms and other search heuristics and serves as an inspiration for the design of new genetic algorithms. Several black-box models covering different classes of algorithms exist, each highlighting a different aspect of the algorithms under considerations. In this work we add to the existing black-box notions a new elitist black-box model, in which algorithms are required to base all decisions solely on (the relative performance of) a fixed number of the best search points sampled so far. Our elitist model thus combines features of the ranking-based and the memory-restricted black-box models with an enforced usage of truncation selection. We provide several examples for which the elitist black-box complexity is exponentially larger than that of the respective complexities in all previous black-box models, thus showing that the elitist black-box complexity can be much closer to the runtime of typical evolutionary algorithms. We also introduce the concept of p-Monte Carlo black-box complexity, which measures the time it takes to optimize a problem with failure probability at most p. Even for small p, the p-Monte Carlo black-box complexity of a function class [Formula: see text] can be smaller by an exponential factor than its typically regarded Las Vegas complexity (which measures the expected time it takes to optimize [Formula: see text]).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.