Abstract

The global regulation of cell growth rate on gene expression perturbs the performance of gene networks, which would impose complex variations on the cell-fate decision landscape. Here we use a simple synthetic circuit of mutual repression that allows a bistable landscape to examine how such global regulation would affect the stability of phenotypic landscape and the accompanying dynamics of cell-fate determination. We show that the landscape experiences a growth-rate-induced bifurcation between monostability and bistability. Theoretical and experimental analyses reveal that this bifurcating deformation of landscape arises from the unbalanced response of gene expression to growth variations. The path of growth transition across the bifurcation would reshape cell-fate decisions. These results demonstrate the importance of growth regulation on cell-fate determination processes, regardless of specific molecular signaling or regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call