Abstract

Understanding how protein-protein interaction networks in the brain give rise to cognitive functions necessitates their characterization in live animals. However, tools available for this purpose require potentially disruptive genetic modifications and lack the temporal resolution necessary to track rapid changes in vivo. Here we leverage affinity-based targeting and photocatalyzed singlet oxygen generation to identify neurotransmitter receptor-proximal proteins in the live mouse brain using only small-molecule reagents and minutes of photoirradiation. Our photooxidation-driven proximity labeling for proteome identification (named PhoxID) method not only recapitulated the known interactomes of three endogenous neurotransmitter receptors (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), inhibitory γ-aminobutyric acid type A receptor and ionotropic glutamate receptor delta-2) but also uncovered age-dependent shifts, identifying NECTIN3 and IGSF3 as developmentally regulated AMPAR-proximal proteins in the cerebellum. Overall, this work establishes a flexible and generalizable platform to study receptor microenvironments in genetically intact specimens with an unprecedented temporal resolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call