Abstract
To achieve high performance operation of doubly fed induction generator (DFIG) based wind turbines under unbalanced voltage conditions, a well designed control system is important, otherwise wind turbines will take a risk of being cut out of the power grid. Meanwhile, without proper designed control the power ripples generated from wind turbines will further aggravate the power grid. Under unbalanced conditions, DFIG was modeled in dual synchronous reference frame (SRF), namely the positive one and the negative one, based on which the dual PI current controllers were designed. To implement the dual current control, the sensing variables were divided into positive and negative sequence components with the designed generalized filters, and then the corresponding control in positive and negative SRF were designed respectively. At the same time, to get the dual SRFs oriented to the positive and negative sequence voltage components, a notch filter based phase latch loop (PLL) control was designed. Experimental results on 11 kW DFIG wind turbine test bed validated the control system design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.