Abstract

This paper proposes a control strategy for a three-phase three-wire thyristor-controlled LC -coupling hybrid active power filter (TCLC-HAPF), which can balance active power and compensate reactive power and harmonic currents under unbalanced loading. Compared with TCLC-HAPF with conventional control strategy, active power filters and hybrid active power filters which either fail to perform satisfactory compensation or require high-rating active inverter part for unbalanced compensation, a control strategy was proposed for TCLC-HAPF to operate with a small rating active inverter part for a variety of loads with satisfactory performance. The control idea is to provide different firing angles for each phase of the thyristor-controlled LC -coupling part (TCLC) to balance active power and compensate reactive power, while the active inverter part aims to compensate harmonic currents. First, the required different TCLC impedances are deduced. Then, independent firing angles referenced to the phase angle of voltage across TCLC are calculated. After angle transformations, final firing angles referenced to phase angle of load voltages are obtained. In this paper, a novel controller for TCLC-HAPF under unbalanced loading is proposed. Simulation and experimental results are provided to verify the effectiveness of the proposed controller in comparison with a state-of-the-art controller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call