Abstract

With the proposed new GNSS signals, enhanced navigation performance is expected in both civil and military applications. However, these new signals introduce the difficulty of combining multiple signal components into a constant-envelope signal. For the Compass B1 band, the problem is to multiplex a QPSK(2) signal and a new multiplexed binary offset carrier (MBOC) signal with a center frequency difference of 14.322 MHz. One approach for multiplexing spreading codes is the phase-optimized constant-envelope transmission (POCET) method proposed for the GPS L1 band. However, only binary spreading codes are considered in POCET. We first generalize the POCET method as a multilevel POCET (MPOCET) algorithm for multilevel coded signals. A new implementation of the alternative binary offset carrier (AltBOC) generator is derived from MPOCET. Secondly, the multiplexing problem for Compass is modeled by MPOCET. Multilevel subcarriers of AltBOC are adopted in the model. As a result, an 8-PSK unbalanced AltBOC (UAltBOC) modulation, which has a QPSK(2) signal at the lower sideband and a TMBOC signal at the upper sideband, is obtained. Simulations for signal model validation and power spectrum analysis are conducted. Numerical results indicate that UAltBOC successfully combines the QPSK and TMBOC signals with only 0.16-dB additional combining loss compared to AltBOC. The proposed MPOCET technique is demonstrated as a unified multiplexing method for navigation signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.