Abstract

Frontal-striatal circuits provide an important neurobiological substrate for timing and time perception as well as for working memory. In this review, we outline recent theoretical and empirical work to suggest that interval timing and working memory rely not only on the same anatomic structures, but also on the same neural representation of a specific stimulus. In the striatal beat-frequency model, cortical neurons fire in an oscillatory fashion to form representations of stimuli, and striatal medium spiny neurons detect those patterns of cortical firing that occur co-incident to important temporal events. Information about stimulus identity can be extracted from the specific cortical networks that are involved in the representation, and information about duration can be extracted from the relative phase of neural firing. The properties derived from these neurobiological models fit well with the psychophysics of timing and time perception as well as with information–processing models that emphasize the importance of temporal coding in a variety of working-memory phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.