Abstract

The growth, tissue content and nutrient removal rates of Ulva spp., when exposed to moderate to high nitrogen (0.5–5 mmol L−1) and phosphorus (0.01–0.9 mmol L−1) concentrations, were examined to get a better understanding of recirculating IMTA (Integrated Multi-Trophic Aquaculture) systems with fish and seaweed. It was hypothesized that fish waste effluents might lead to unfavorable nutrient stoichiometry and/or toxic conditions, which might harm seaweeds and, specifically for the present study, reduce Ulva spp. performance. Results demonstrate that: (I) the unfavorable N:P stoichiometry (N:P ≠ Atkinson atomic ratio of 30:1) did not restrict Ulva spp. growth nor tissue content; this indicates that supply of both nutrients exceeded the minimum requirements; (II) a high orthophosphate concentration (0.9 mmol L−1) was toxic to Ulva spp., whereas (III) a high nitrate concentration (5 mmol L−1) did not inhibit phosphorus uptake; (IV) Ulva’s growth was not enhanced when nitrate was exchanged for similarly high ammonium concentrations. However, tissue nitrogen content was 1.4 times higher when exposed to ammonium than nitrate, suggesting that the former N-form was stored faster in the seaweed’s tissue. Therefore, other factors must have limited growth with the high ammonium concentrations. This study also highlights the importance of relatively long acclimatization periods (one week) when maintenance uptake (Vm) is evaluated, as surge uptake (Vs) may result in considerably different and more variable rates. Results of this study contribute to a better understanding of the application of Ulva spp. as extractive component in closed IMTA systems, thus advancing sustainable and circular production techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.