Abstract

Seaweed cultivation, including kelp species, is rapidly expanding in many regions. A widely assumed co-benefit of seaweed farming is increased local carbon sequestration rates (thereby contributing to climate change mitigation), although direct field-based measurements of carbon assimilation and release are largely lacking. We quantified growth, erosion and dislodgement rates of farmed Saccharina latissima in Porthallow Bay (Cornwall, UK) throughout a typical cultivation season to provide insights into the carbon sequestration potential of small-scale kelp farms. Blade elongation rates increased from ~ 1.3 cm day−1 to ~ 2.3 cm day−1 in March–April, before declining to 1.4 cm day−1 by May. Meanwhile, erosion rates remained low, ranging from ~ 0.5 to ~ 0.8 cm day−1. Dislodgement rates decreased from 20% of plants in January–February to 5% in April–May. Rates of carbon accumulation and loss increased from January to May, related to an increase in standing stock. Conservative first-order estimates suggest that the farm captures 0.14 t C ha−1 y−1, of which up to 70% is released into the environment as particulate organic carbon. Based on previous estimates of carbon burial and storage rates, the farm may sequester 0.05 t CO2e ha−1 y−1. These values suggest that scaling-up European kelp farming should be motivated by other co-benefits, such as low-carbon product alternatives, job creation and potential biodiversity gains, and not be solely driven by a perceived meaningful increase in carbon sequestration. Importantly, further information needs to be obtained from a variety of cultivation sites to develop a better understanding of carbon dynamics associated with kelp farms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.