Abstract

Ultraviolet surface plasmon polariton propagation for ZnO semiconductor-insulator-metal waveguide is investigated by means of the finite-element method. The field distribution, effective refractivity, propagation distance, and mode area of the hybrid mode supported by the waveguides were detailed analyzed, which are dependent on the dielectric constant and geometrical parameters. In order to achieve low propagation loss and subwavelength field confinement, several materials are calculated. Our investigation indicated that air and aluminum are better, which act as the insulator and metal respectively, and the effective mode area of such a waveguide can be as small as λ2/100. The results can help the development of nano-sized light sources which can enhance the sensitivity for bio-detection devices and diagnostic equipments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.