Abstract

In this paper, we present a modified slot surface plasmonic waveguide formed by metallic rod, core dielectric layer, and metallic film on the substrate. Using the finite-difference frequency-domain method, modal field distribution are analyzed firstly. Results show that the fundamental mode could be well confined in the space between the metal rod and the metal film. The dependence of modal field distribution, effective index, and propagation length of the fundamental plasmonic mode without gain on dielectric constant of the core layer, geometrical parameters, and working wavelengths are analyzed and discussed. A kind of available gain dielectric medium was used for the core dielectric layer to extend the propagation length. Results show that the propagation length can be extended observably with the help of the gain dielectric medium. Finally, effect of the thickness of the core dielectric layer on modal field distribution, effective index, and propagation length are analyzed and discussed. Since the modal field distribution, effective index, and propagation length can be controlled by adjusting the geometrical parameters, dielectric constant and gain of the core layer and working wavelengths of the waveguide, this kind of surface plasmonic waveguide can be applied to the field of photonic device integration and sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call