Abstract

Intermediate resolution (6Å) photoelectric spectral scans of Titan, Saturn, Saturn's Rings and the Moon appear in two forms: ratio spectra of Titan vs the Rings and of Saturn vs the Rings, and relative reflectivities, which are compared to previously published results. Titan's geometrical albedo of 0.094 ± 0.012 was measured at 4255Å with a 50Å bandpass. From this and the spectral measurements, we derived the geometrical albedo as a function of wavelength. We find that the wavelength dependences of Titan's uv spectrum and the spectrum of Saturn's Rings are remarkably similar. No trace of any absorption bands is apparent. These results imply that uv gaseous absorption and Rayleigh scattering play a strongly subdued role in Titan's atmosphere. Any homogeneous atmospheric model implies that the absorber responsible for Titan's uv spectral albedo varies strongly with wavelength. On the other hand, we find that the uv observations can be satisfied by an absorber having a relatively weak dependence upon wavelength if an inhomogeneous atmospheric model is employed. In particular, a fine dust, which absorbs as 1/ λ, can explain the uv observations provided that it is preferentially distributed high up in Titan's atmosphere where the optical depth from Rayleigh scattering is low. The likely presence of such a dust in Jupiter's atmosphere and the difficulty in explaining the nature of a continuous uv absorber which varies rapidly with wavelength suggest that the gas and aerosol in Titan's atmosphere are inhomogeneously distributed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.