Abstract
The reflectance spectra of Ganymede, Europa, Callisto, and Saturn's rings are analyzed using recent laboratory reflectance studies of water frost, water ice, and water and mineral mixtures. It is found that the spectra of the icy Galilean satellites are characteristic of water ice (e.g., ice blocks or possibly very large ice crystals ≳ 1 cm) or frost on ice rather than pure water frost, and that the decrease in reflectance at visible wavelengths is caused by other mineral grains in the surface. The spectra of Saturn's rings are more characteristic of water frost with some other mineral grains mixed in the frost but not on the surface. The impurities on all these objects are not in spectrally isolated patches but appear to be intimately mixed with the water. The impurity grains appear to have reflectance spectra typical of minerals containing Fe 3+. Some carbonaceous chondrite meteorite spectra show the necessary spectral shape. Ganymede is found to have more water ice on the surface than previously thought (∼90 wt%), as is Callisto (30–90 wt%). The surface of Europa has a vast frozen water surface with only a few percent impurities. Saturn's rings also have only a few percent impurities. The amount of bound water or bound OH for these objects is 5 ± 5 wt% averaged over the entire surface. Thus with the small amount of nonicy material present on these objects, no hydrated minerals can be ruled out. A new absorption feature is identified in Ganymede, Callisto, and probably Europa at 1.5 μm which is also seen in the spectra of Io but not in Saturn's rings. This feature has not been seen in laboratory studies and its cause is unknown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.