Abstract

Random lasing (RL) from self-constructed localized cavities based on micropits scatters in a single GaN microwire (MW) was investigated. The spectra and spatial resolution of RL exhibits that the lasing modes originated from different regions in the MW. Temperature-dependent lasing measurement of GaN RL shows an excellent characteristic temperature of about 52 K. In addition, the dependence of spatial localized cavities’ dimension on the pumping intensity profile and temperature was studied by fast Fourier transform spectroscopy. For GaN RL, the optical feedback was supported by localized paths through the scattering effect of micropits in the MW. The scattering feedback mechanism for RL can avoid the enormous difficulty in fabricating artificial cavity structures for GaN. Hence, the results in this paper represent a low-cost technique to realize GaN-based ultraviolet laser diodes without the fabrication difficulty of cavity facets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.