Abstract

The room-temperature photosensitivity of sulfur-doped micro-, submicro-, and nano-crystalline diamond films synthesized by hot-filament chemical vapor deposition was studied. The structure and composition of these diamond materials were characterized by Raman spectroscopy, scanning electron microscopy, and x-ray diffraction. The ultraviolet (UV) sensitivity and response time were studied for the three types of diamond materials using a steady-state broad UV excitation source and two pulsed UV laser radiations. It was found that they have high sensitivity in the UV region (as high as 109 s−1 mV−1 range), a linear response in a broad spectral range below 320 nm, photocurrents around ∼10−5 A, and a short response time better than 100 ns, which is independent of fluency intensity. A phenomenological model was applied to help understand the role of defects and dopant concentration on the materials’ photosensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.