Abstract

Our simple instrumentation for generating a UV-microbeam is described UV microbeam irradiations of the central spindle in the pennate diatom Hantzschia amphioxys have been examined through correlated birefringence light microscopy and TEM. A precise correlation between the region of reduced birefringence and the UV-induced lesion in the microtubules (MTs) of the central spindle is demonstrated. The UV beam appears to dissociate MTs, as MT fragments were rarely encountered. The forces associated with metaphase and anaphase spindles have been studied via localized UV-microbeam irradiation of the central spindle. These spindles were found to be subjected to compressional forces, presumably exerted by stretched or contracting chromosomes. Comparisons are made with the results of other writers. These compressional forces caused the poles of a severed anaphase spindle to move toward each other and the center of the cell. As these poles moved centrally, the larger of the two postirradiational central spindle remnants elongated with a concomitant decrease in the length of the overlap. Metaphase spindles, in contrast, did not elongate nor lose their overlap region. Our interpretation is that the force for anaphase spindle elongation in Hantzschia is generated between half-spindles in the region of MT overlap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call