Abstract
The endoplasmic reticulum (ER) stress response is a cytoprotective mechanism against the accumulation of unfolded proteins in the ER (ER stress) that consists of three response pathways (the ATF6, IRE1 and PERK pathways) in mammals. These pathways regulate the transcription of ER-related genes through specific cis-acting elements, ERSE, UPRE and AARE, respectively. Because the mammalian ER stress response is markedly activated in professional secretory cells, its main function was thought to be to upregulate the capacity of protein folding in the ER in accordance with the increased synthesis of secretory proteins. Here, we found that ultraviolet A (UVA) irradiation induced the conversion of an ER-localized sensor pATF6α(P) to an active transcription factor pATF6α(N) in normal human dermal fibroblasts (NHDFs). UVA also induced IRE1-mediated splicing of XBP1 mRNA as well as PERK-mediated phosphorylation of an α subunit of eukaryotic initiation factor 2. Consistent with these observations, we found that UVA increased transcription from ERSE, UPRE and AARE elements. From these results, we concluded that UVA irradiation activates all branches of the mammalian ER stress response in NHDFs. This suggests that the mammalian ER stress response is activated by not only intrinsic stress but also environmental stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.