Abstract
Background Brightness-mode (B-mode) ultrasound is a valuable tool to non-invasively image skeletal muscle architectural changes during movement, but automatically tracking muscle fascicles remains a major challenge. Existing fascicle tracking algorithms either require time-consuming drift corrections or yield noisy estimates that require post-processing. We therefore aimed to develop an algorithm that tracks fascicles without drift and with low noise across a range of experimental conditions and image acquisition settings. Methods We applied a Kalman filter to combine fascicle length and fascicle angle estimates from existing and openly-available UltraTrack and TimTrack algorithms into a hybrid algorithm called UltraTimTrack. We applied the hybrid algorithm to ultrasound image sequences collected from the human medial gastrocnemius of healthy individuals (N = 8, four women), who performed cyclical submaximal plantar flexion contractions or remained at rest during passive ankle joint rotations at given frequencies and amplitudes whilst seated in a dynamometer chair. We quantified the algorithm’s tracking accuracy, noise, and drift as the respective mean, cycle-to-cycle variability, and accumulated between-contraction variability in fascicle length and fascicle angle. We expected UltraTimTrack’s estimates to be less noisy than TimTrack’s estimates and to drift less than UltraTrack’s estimates across a range of conditions and image acquisition settings. Results The proposed algorithm yielded low-noise estimates like UltraTrack and was drift-free like TimTrack across the broad range of conditions we tested. Over 120 cyclical contractions, fascicle length and fascicle angle deviations of UltraTimTrack accumulated to 2.1 ± 1.3 mm (mean ± sd) and 0.8 ± 0.7 deg, respectively. This was considerably less than UltraTrack (67.0 ± 59.3 mm, 9.3 ± 8.6 deg) and similar to TimTrack (1.9 ± 2.2 mm, 0.9 ± 1.0 deg). Average cycle-to-cycle variability of UltraTimTrack was 1.4 ± 0.4 mm and 0.6 ± 0.3 deg, which was similar to UltraTrack (1.1 ± 0.3 mm, 0.5 ± 0.1 deg) and less than TimTrack (3.5 ± 1.0 mm, 1.4 ± 0.5 deg). UltraTimTrack was less affected by experimental conditions and image acquisition settings than its parent algorithms. It also yielded similar or lower root-mean-square deviations from manual tracking for previously published image sequences (fascicle length: 2.3–2.6 mm, fascicle angle: 0.8–0.9 deg) compared with a recently-proposed hybrid algorithm (4.7 mm, 0.9 deg), and the recently-proposed DL_Track algorithm (3.8 mm, 3.9 deg). Furthermore, UltraTimTrack’s processing time (0.2 s per image) was at least five times shorter than that of these recently-proposed algorithms. Conclusion We developed a Kalman-filter-based algorithm to improve fascicle tracking from B-mode ultrasound image sequences. The proposed algorithm provides low-noise, drift-free estimates of muscle architectural changes that may better inform muscle function interpretations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have