Abstract

Microfluidic photoionization detectors (μPIDs) based on silicon chips can rapidly and sensitively detect volatile compounds. However, the applications of μPID are limited by the manual assembly process using glue, which may outgas and clog the fluidic channel, and by the short lifetime of the vacuum ultraviolet (VUV) lamps (especially, argon lamps). Here, we developed a gold-gold cold welding-based microfabrication process to integrate ultrathin (10 nm) silica into μPID. The silica coating enables direct bonding of the VUV window to silicon under amicable conditions and works as a moisture and plasma exposure barrier for VUV windows that are susceptible to hygroscopicity and solarization. Detailed characterization of the silica coating was conducted, showing that the 10 nm silica coating allows 40-80% VUV transmission from 8.5 to 11.5 eV. It is further shown that the silica-protected μPID maintained 90% of its original sensitivity after 2200 h of exposure to ambient (dew point = 8.0 ± 1.8 °C), compared to 39% without silica. Furthermore, argon plasma inside an argon VUV lamp was identified as the dominant degradation source for the LiF window with color centers formation in UV-vis and VUV transmission spectra. Ultrathin silica was then also demonstrated effective in protecting the LiF from argon plasma exposure. Lastly, thermal annealing was found to bleach the color centers and restore VUV transmission of degraded LiF windows effectively, which will lead to future development of a new type of VUV lamp and the corresponding μPID (and PID in general) that can be mass produced with a high yield, a longer lifetime, and better regenerability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call