Abstract

Covalent organic frameworks (COF) are deemed as disruptive membrane materials owing to their versatile functionalities, high stability and ordered nanochannels. However, the size mismatch between the COF intrinsic pore and gas molecules becomes a grand challenge when using COF membrane for carbon capture. Herein, we propose a new type of polymer-functionalized COF laminar membranes through grafting CO2-phlic polyethyleneimine (PEI) polymer onto carboxylic acid COF (cCOF) laminar membranes. The cCOF nanosheets with high density of carboxyl groups are prepared via modified single phase solution method and then assembled to fabricate membranes. Further, the cCOF membranes are functionalized with PEI using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-Hydroxysuccinimide (EDC/NHS) coupling chemistry. The introduction of abundant amino groups from PEI afford the affinity of membranes toward CO2. Meanwhile, the graft of the PEI polymers reduces the defects or pinholes on the membrane surface. As a result, the PEI functionalized cCOF membranes exhibit a high CO2 permeance of 1004 GPU and a CO2/N2 selectivity of 33.7, which reach the carbon capture target performance and show great prospect for treating real flue gas. Our approach of functionalizing cCOF membranes with tailored functionalities may inspire the design of molecule-selective COF membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.