Abstract

Fabrication of high-quality ultrathin monocrystalline silicon layers and their transfer to low-cost substrates are key steps for flexible electronics and photovoltaics. In this work, we demonstrate a low-temperature and low-cost process for ultrathin silicon solar cells. By using standard plasma-enhanced chemical vapor deposition (PECVD), we grow high-quality epitaxial silicon layers (epi-PECVD) from SiH4/H2 gas mixtures at 175 °C. Using secondary ion mass spectrometry and transmission electron microscopy, we show that the porosity of the epi-PECVD/crystalline silicon interface can be tuned by controlling the hydrogen accumulation there. Moreover, we demonstrate that 13–14% porosity is a threshold above which the interface becomes fragile and can easily be cleaved. Taking advantage of the H-rich interface fragility, we demonstrate the transfer of large areas (∽10 cm2) ultrathin epi-PECVD layers (0.5–5.5 µm) onto glass substrates by anodic bonding and moderate annealing (275–350 °C). The structural properties of transferred layers are assessed, and the first PECVD epitaxial silicon solar cells transferred on glass are characterized. Copyright © 2016 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.