Abstract

Thermal engineering of many nanoscale sensors, actuators, and high-density thermomechanical data storage devices, as well as the self-heating in deep submicron transistors, are largely influenced by thermal conduction in ultrathin silicon layers. The present study measures the lateral thermal conductivity of single-crystal silicon layers of thicknesses 20 and 100 nm at temperatures between 20 and 300 K, using Joule heating and electrical–resistance thermometry in suspended microfabricated structures. The thermal conductivity of the 20 nm thick silicon layer is ∼22 W m−1 K−1, which is nearly an order of magnitude smaller than the bulk value at room temperature. In general, a large reduction in thermal conductivity resulting from phonon–boundary scattering, particularly at low temperatures, is observed. It appears that the classical thermal conductivity theory that accounts for the reduced phonon mean-free paths based on a solution of the Boltzmann transport equation along a layer is able to capture the ballistic, or nonlocal, phonon transport in ultrathin silicon films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.