Abstract

During the past decade, enormous progress has been made in growing ultrathin organic films and multilayer structures with a wide range of exciting optoelectronic properties. This progress has been made possible by several important advances in our understanding of organic films and their modes of growth. Perhaps the single most important advance has been the use of ultrahigh vacuum (UHV) as a means to achieve, for the first time, monolayer control over the growth of organic thin films with extremely high chemical purity and structural precision.1-3 Such monolayer control has been possible for many years using well-known techniques such as Langmuir-Blodgett film deposition,4 and more recently, self-assembled monolayers from solution have also been achieved.5 However, ultrahighvacuum growth, sometimes referred to as organic molecular beam deposition (OMBD) or organic molecular beam epitaxy (OMBE), has the advantage of providing both layer thickness control and an atomically clean environment and substrate. When combined with the ability to perform in situ highresolution structural diagnostics of the films as they are being deposited, techniques such as OMBD have provided an entirely new prospect for understanding many of the fundamental structural and optoelectronic properties of ultrathin organic film systems. Since such systems are both of intrinsic as well as practical interest, substantial effort worldwide has been invested in attempting to grow and investigate the properties of such thin-film systems. This paper is a review of recent progress made in organic thin films grown in ultrahigh vacuum or using other vapor-phase deposition methods. We will describe the most important work which has been published in this field since the emergence of OMBD in the mid-1980s. Both the nature of thin-film growth and structural ordering will be discussed, as well as some of the more interesting consequences to the physical properties of such organic thin-film systems will be considered both from a theoretical as well as an experimental viewpoint. Indeed, it will 1793 Chem. Rev. 1997, 97, 1793−1896

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call