Abstract

We predict that a liquid crystal/silver nanoparticles mixture can be designed so that its effective ordinary and extraordinary permittivities have, in a frequency range, real parts of different signs. We exploit this result to design an optical switch obtained by sandwiching a few hundred nanometers thick slab of the proposed mixture between two silica layers. By resorting to full-wave simulations, we show that, by varying the direction of an externally applied electric field, the transmissivity of the structure can be switched between 0.02 and 0.4 at a wavelength close to the frequency range where the medium is indefinite. The device functionality physically stems from the fact that the orientation of the hyperbola characterizing extraordinary waves within the indefinite medium follows the applied electric field direction and therefore, if the hyperbola asymptote is nearly normal to the slab, full switch between evanescent and homogeneous propagating waves can be achieved within the medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.