Abstract

Diamond-like carbon (DLC) coatings were deposited using a commercial direct ion beam deposition technique on thin-film Al2O3–TiC inductive write heads. The coating thicknesses used were 5, 10, and 20 nm. Accelerated wear tests were conducted with metal particle tapes in a linear tape drive. Atomic force microscopy was used to image the thin-film regions to measure pole tip recession (PTR), relative wear of the pole tip with respect to the air bearing surface. It is found that the coating wears off of the head substrate to a significant extent in the first 1000 km of sliding distance. The coating is worn off the substrate long before it wears off of the thin-film region. The existence of the coating on the thin-film region provides close enough wear characteristics between the substrate and thin film that the two wear at similar rates. This results in little growth in pole tip recession. Early in the wear test, the coated substrate wears at a slightly higher rate than the DLC coated thin-film region due to the difference in tape contact pressure between the two materials; decreasing PTR is the result. As the coating on the substrate wears significantly, PTR begins to increase with sliding distance. Failure does not actually occur until the coating has worn off of the thin-film region. Near failure, the coating delaminates locally. Results indicate that coatings of 20 nm thickness may provide protection against PTR in future tape drives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call