Abstract

Here we report on the synthesis of novel dendritic Pt3Cu triangular pyramid caps via a solvothermal coreduction method. These caps had three-dimensional caved structures with ultrathin branches, as evidenced by high-resolution transmission electron microscopy (HRTEM) and HAADF-STEM characterization. Tuning the reduction kinetics of two metal precursors by an iodide ion was believed to be the key for the formation of an alloyed nanostructure. Electro-oxidation of methanol and formic acid showed dramatically improved electrocatalytic activities and poison-tolerance for these nanoalloys as compared to commercial Pt/C catalysts, which was attributed to their unique open porous structure with interconnected network, ultrahigh surface areas, as well as synergetic effect of the two metallic components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call