Abstract

With the development of artificial intelligence systems, it is necessary to develop optoelectronic devices with photoresponse and storage capacity to simulate human visual perception systems. The key to an artificial visual perception system is to integrate components with both sensing and storage capabilities of illumination information. Although module integration components have made useful progress, they still face challenges such as multispectral response and high energy consumption. Here, we developed a light-adapted optoelectronic-memristive device integrated by an organic photodetector and ferroelectric-based memristor to simulate human visual perception. ITO/P3HT:PC71BM/Au as the light sensor unit shows a high on/off ratio (Iph/Id) reaching ∼5 × 104 at 0 V. The memristor unit, consisting of ITO/CBI@P(VDF-TrFE)/Cu, has a RON/ROFF ratio window of ∼106 under 0.05 V read voltage and ultralow power consumption of ∼1 pW. Moreover, the artificial visual perception unit shows stable light-adapted memory windows under different wavelengths of irradiation light (400, 500, and 600 nm; they meet the spectral range of human visual recognition) and can clearly identify the target image ("T" shape) because of the apparent contrast, which results from the high ROFF/RON ratio values. These results provide a potential design strategy for the development of intelligent artificial vision systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.