Abstract

CO2 reduction reactions (CO2 RR) powered by renewable electricity can directly convert CO2 to hydrocarbons and fix the sustainable but intermittent energy (e. g., sunlight, wind, etc.) in stable and portable chemical fuels. Advanced catalysts boosting CO2 RR with high activity, selectivity, and durability at low overpotentials are of great importance but still elusive. Here, we report that the ultrathin Pd-Ag dendritic nanoplates (PdAg DNPs) exhibited boosted activity, selectivity, and stability for producing formate from CO2 at a very low overpotential in aqueous solutions under ambient conditions. As a result, the PdAg DNPs exhibited a Faradaic efficiency (FE) for formate of 91% and a cathodic energy efficiency (EE) of ∼90% at the potential of -0.2 V versus reversible hydrogen electrode (vs. RHE), showing significantly enhanced durability as compared with pure Pd catalysts. Our strategy represents a rational catalyst design by engineering the surface geometrical and electronic structures of metal nanocrystals and may find more applicability in future electrocatalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call