Abstract

Nanomaterials doped with high atom number elements can improve the efficacy of cancer radiotherapy, but their clinical application faces obstacles, such as being difficult to degrade in vivo, or still requiring relatively high radiation dose. In this work, a bismuth oxycarbonate-based ultrathin nanosheet with the thickness of 2.8nm for safe and efficient tumor radiotherapy under low dose of X-ray irradiation is proposed. The high oxygen content (62.5% at%) and selective exposure of the facets of ultrathin 2D nanostrusctures facilitate the escape of large amounts of oxygen atoms on bismuth nanosheets from surface, forming massive oxygen vacancies and generating reactive oxygen species that explode under the action of X-rays. Moreover, the exposure of almost all atoms to environmental factors and the nature of oxycarbonates makes the nanosheets easily degrade into biocompatible species. In vivo studies demonstrate that nanosheets could induce apoptosis in cancer cells after low dose of X-ray irradiation without causing any damage to the liver or kidney. The tumor growth inhibition effect of radiotherapy increases from 49.88% to 90.76% with the help of bismuth oxycarbonate nanosheets. This work offers a promising future for nanosheet-based clinical radiotherapies of malignant cancers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.