Abstract
This report presents ultrastructural observations on the cytological events that attend myelin formation occurring in the wake of demyelination in adult cat spinal cord. Lesions were induced in subpial cord by cerebrospinal fluid (c.s.f.) exchange (1, 2). Tissue from eleven cats at nine intervals from 19 to 460 days was fixed in situ by replacing c.s.f. with buffered OsO(4) and embedded in Araldite. After demyelination, axons are embraced by sheet-like glial processes. An occasional myelin sheath is first seen at 19 days; by 64 days, all axons are at least thinly myelinated. The cytoplasm of the myelin-forming cells, unlike that of either oligodendrocyte or fibrous astrocyte in normal cord, is dense with closely packed organelles and fine fibrils. Many of the myelinogenic cells become scarring astrocytes and at 460 days the lesion teems with their fibril-filled processes. Oligodendrocytes appear in the lesion after remyelination is under way. Phagocytes disappear gradually. A myelin sheath is formed by spiral wrapping of a sheet-like glial process around an axon. Where the first turn of the spiral is completed, a mesaxon is formed. As cytoplasm is lost from the process, the plasma membrane comes together along its outer and cytoplasmic surfaces to form compact myelin. Only a small amount of cytoplasm is retained; it is confined to the paramesaxonal region and, on the sheath exterior, to a longitudinal ridge which appears in profile as a small loop. This outer loop has the same rotational orientation as the inner mesaxon. These vestiges of spiral membrane wrapping are also found in normal adult and new-born cat cord. Nodes are present in all stages of remyelination and in normal adult cat and kitten cord. These observations suggest that myelin is reformed in the lesion in the same way it is first formed during normal development. The mechanism of myelin formation is basically similar to that proposed for peripheral nerve and amphibian and mammalian optic nerve; it does not agree with present views on the mechanism of myelinogenesis in mammalian brain and cord. This is the first demonstration of remyelination in adult mammalian central nervous tissue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.