Abstract

The anatomy of intracellularly HRP-labeled soleus alpha-motoneurone dendrites was studied both in normal adult cats ("normal soleus", NS) and in adult cats which at a postnatal age of 5-7 days had been subjected to chronic tenotomy of either the soleus muscle ("tenotomized soleus", TS), or all the soleus synergists contributing to the achilles tendon ("overloaded soleus", OS). A set of "structural rules" seemed to govern the architecture of normal soleus alpha-motoneurone dendrites. Thus, the dendrites branched dichotomously and the number of daughter branches originating from a preterminal branch was proportional to the diameter of that parent branch. Branch diameter decreased across branching points according to the "3/2 power rule" of Rall (1959). Branching occurred down to a preterminal branch diameter of about 0.8 micron. Through all branch orders there existed a quite precise relation between the diameter of a preterminal branch and the membrane area of its distal dendritic arborization. The average dendritic path distance from soma to termination was not closely related to the diameter of the stem dendrite, since thick stem dendrites rather generated more profusely branched arborizations than thin stem dendrites. As a corollary of these characteristics close relations existed between the dendritic stem diameter on one hand, and the total number of branches, combined dendritic length, total dendritic membrane area and total volume, on the other. In the OS material, the dendrites were not different from those of normal soleus motoneurone dendrites. In the TS material, the dendrites were less branched and had greater dendritic path lengths, although the relations between various size-parameters within the dendrites were not significantly altered compared with normal dendrites. It was concluded that the change in branching pattern was due to a net elimination of dendritic branches following the muscle tenotomy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call