Abstract
In the hippocampal formation, Ca(v)1.2 (L-type) voltage-gated Ca(2+) channels mediate Ca(2+) signals that can trigger long-term alterations in synaptic efficacy underlying learning and memory. Immunocytochemical studies indicate that Ca(v)1.2 channels are localized mainly in the soma and proximal dendrites of hippocampal pyramidal neurons, but electrophysiological data suggest a broader distribution of these channels. To define the subcellular substrates underlying Ca(v)1.2 Ca(2+) signals, we analyzed the localization of Ca(v)1.2 in the hippocampal formation by using antibodies against the pore-forming alpha(1)-subunit of Ca(v)1.2 (alpha(1)1.2). By light microscopy, alpha(1)1.2-like immunoreactivity (alpha(1)1.2-IR) was detected in pyramidal cell soma and dendritic fields of areas CA1-CA3 and in granule cell soma and fibers in the dentate gyrus. At the electron microscopic level, alpha(1)1.2-IR was localized in dendrites, but also in axons, axon terminals, and glial processes in all hippocampal subfields. Plasmalemmal immunogold particles representing alpha(1)1.2-IR were more significant for small- than large-caliber dendrites and were largely associated with extrasynaptic regions in dendritic spines and axon terminals. These findings provide the first detailed ultrastructural analysis of Ca(v)1.2 localization in the brain and support functionally diverse roles of these channels in the hippocampal formation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have