Abstract

Germline cells of many animals possess characteristic cytoplasmic structures termed germinal granules or nuage. Germinal granules are ribonucleoprotein (RNP) amorphous aggregates lacking limiting membranes, and their molecular composition is evolutionarily conserved in divergent species. Studies on germinal granules in several model animals, such as Drosophila, C. elegans and Xenopus, have mainly focused on the asymmetric partitioning of the structures to prospective germ cells during early embryogenesis. In mammals, on the other hand, germinal granules become discernible at later stages of germ cell differentiation, such as in spermatogenesis and oogenesis. Interestingly, recent genetic studies indicate that germinal granule components in mice function primarily in postnatal germ cell differentiation in the male, but not in early embryonic stages. While the function(s) of germinal granules shared by divergent species and at different differentiation stages of the germline remain elusive, evidence is accumulating that the characteristic RNP is associated with RNA metabolism, retrotransposon regulation and interplay with mitochondria. Here, we present a brief overview of the structural and molecular characteristics of mammalian germinal granules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.