Abstract

As shown previously, ultraviolet (uv) microbeam irradiation of one of the two mature nucleoli within an interphase cell nucleus causes significant diminution and inactivation of the irradiated nucleolus and compensatory growth and activation of the nonirradiated one. In the present work we describe the results of an ultrastructural study of this phenomenon. The changes in the nucleoli were examined by means of complete series of ultrathin sections obtained from seven irradiated pig kidney cells. The compensatory hypertrophy of the nonirradiated nucleoli is shown to be accompanied by a nearly twofold increase in the number of fibrillar centers (FCs) and by a decrease in their linear dimensions compared with the control cells of the same ploidy. In the degraded nucleoli the number of FCs decreases, but their dimensions increase. Ultraviolet microbeam irradiation causes dramatic diminution of the dense fibrillar component within the irradiated nucleoli as well. The nucleolar capacity for compensatory hypertrophy indicates that in addition to active ribosomal genes, mature nucleoli also contain “silent” genes capable of being activated under extreme conditions to sustain the required level of rRNA synthesis. It is assumed that activation of latent ribosomal genes is accompanied by FC “fragmentation” without a considerable increase in their total volume per cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call