Abstract

The colonization processes of the xylem in the susceptible carnation cv. Early Sam and the resistant cv. Novada were studied ultrastructurally following inoculation with Fusarium oxysporum f.sp. dianthi. Samples from 1 to 3 cm above the incision were collected over 5 weeks and processed following conventional procedures as well as with probes for cellulose, N-acetyl-glucosamine, and pectin. The fungus grew profusely in the vessel lumina of the susceptible cultivar. Some of the colonized vessels were lined with coating material connected to the fungal cell wall and extending into the host cell wall through microfilamentous-like structures. Coatings did not label for pectin or cellulose. The pathogen crossed from one vessel element to another (and at times to parenchyma cells) usually directly through pit membranes; often the invading structures of the fungus appeared to be either only membrane-bound or formed solely of microfilamentous-like entities. The fungus subsequently invaded extensively, generally by means of microhyphae, the vessel intercalary walls from the pit membranes and vessel wall junctures. Microhyphae had thin or imperceptible walls and contained only some of the normal cytoplasmic components. Initially, the invading hyphae dislocated the host cell walls, apparently mechanically more than by lysis; however, more pronounced lysis occurred following general tissue invasion. Host parenchyma cells seemed relatively unaffected, even after the surrounding walls had undergone severe degradation. Colonization of resistant plants was restricted. Degradation of tissues did not occur and microhyphae were not observed. Inoculated vessel elements in the 'Novada' plants contained numerous fungal cells and little occluding material, whereas the surrounding vessels were almost completely occluded. The initially invaded xylem became tangentially compartmentalized by parenchyma cell wall thickenings and by hyperplastic parenchyma. Occasionally, hyperplastic tissues were slightly re-invaded, forming secondary invasion pockets. Vessel-occluding material varied in structure and opacity, not only from vessel to vessel but also within the same vessel, and contained microfilamentous-like structures and other types of fine fibrillar material. Some vessel elements in or near the secondary invasion pockets contained only the finer fibrils that reacted strongly with an antibody specific for pectin. Vessel elements rarely contained tyloses.Key words: cellulose, chitin, Dianthus caryophyllus, Fusarium wilt, gels and gums, host wall degradation, microhyphae, pectin, tyloses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call