Abstract

Massive infusion of conidia ofVerticillium albo-atrum into the xylem of tomato induces a cell wall coating response in resistant and susceptible near-isolines. In the early stages two types of coating material develop in the xylem vessels. The first, designated type A, is formed in association with xylem parenchyma cells that lack secondary walls; the localized accumulation of type A coating in the in the adjacent intercellular spaces, primary walls (i.e., pit membranes) and vessels occurs in conjunction with localized development of apposition wall layers within the parenchyma cells. Type B coating is initially formed in association with xylem parenchyma cells with secondary walls; the localized accumulation of typeB coating in the adjacent intercellular spaces, primary walls (i.e., pit membranes) and vessels occurs in conjunction with development of protective layers within the parenchyma cells. Most vessels are surrounded by a number of parenchyma cells including both cell types; therefore, in most vessels the coatings are mixed in later stages of development (i.e.,> 48 hours). The formation of both types of coating is stopped by the application of L-α-aminooxy-β-phenylpropionate, a specific inhibitor of phenylpropanoid synthesis. Histochemically, type A coating resembles lignin and type B, suberin. The data suggest that the coating response is due, wholly or in part to hypersecretion and/or chemical modification of normal cell wall components, induced by the pathogen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call