Abstract

The effective removal of radioactive 99TcO4- anion from nuclear wastewater remains a very difficult unsolved problem. Functional adsorbent materials with high stability, anion-exchange capacity, excellent selectivity, and recyclability are much needed to solve this problem. In this work, we designed two stable cationic metal-organic frameworks (MOFs)-Zr-tcbp-Me and Zr-tcpp-Me-for possible use as adsorbent materials to remove 99TcO4-. Both compounds were synthesized by solvothermal reactions of the tetracarboxylate ligand with zirconium salt, followed by postsynthetic modification (N-methylation). The crystallinity of both zirconium-based MOFs can be well retained under harsh conditions, and they exhibit high adsorption capacity and selectivity toward ReO4- anion, a nonradioactive analogue of 99TcO4-. Zr-tcbp-Me and Zr-tcpp-Me demonstrate the highest framework stability toward acidity among all previously reported cationic MOFs that have been tested for perrhenate removal from wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call