Abstract
Cationic metal-organic framework (MOF) materials are widely used in the anion separation field, but there are few reports of pyrimidyl ligands as building units. In this work, three new cationic MOFs based on pyrimidyl as functional group ligands were synthesized for the removal of radioactive pertechnetate from aqueous solution. The pyrimidyl ligands were designed by incorporating pyrimidyl units into the skeletons of benzene, triphenylamine, and tetraphenylethylene, respectively. Taking advantage of multiple coordination sites of pyrimidyl groups, three cationic MOFs (ZJU-X11, ZJU-X12, and ZJU-X13) with diverse structures were solvothermally synthesized using silver ion as the metal node. Scanning electron microscopy-energy-dispersive spectroscopy mapping demonstrated that these three cationic MOFs could capture ReO4- via anion exchange, but the sorption capabilities were distinctly different. With 95% removal toward ReO4-, ZJU-X11 showed the strongest anion-exchange competence among the three MOFs. According to the results of batch experiments, ZJU-X11 could achieve sorption equilibrium within 10 min, remove 518 mg of ReO4- per 1 g of ZJU-X11, remove most of ReO4- after four recycles, and maintain satisfactory selectivity in the presence of excess competing anions, which is one of the best MOF materials for removing ReO4-/TcO4- among the three cationic MOFs. This work indicates that the pyrimidyl group is a promising multiple site to build versatile cationic MOFs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.