Abstract

PtNC single-atom catalysts (SACs) single-atom catalysts (SACs) are promising for acidic hydrogen evolution reaction (HER) but suffer from instability at high current densities, limiting their large-scale application. Herein, PtO bonds are constructed to securely anchor atomically dispersed Pt for single-atom (SA) catalysis, utilizing etched vertical graphene (EVG) nanosheets as monolithic supports (Pt-SAs/EVG). Compared to PtNC, the resultant PtO4 coordination demonstrates improved stability while maintaining significant catalytic activity. When applying this catalyst in the acidic HER, a high turnover frequency (34.6 s−1) is achieved at 70 mV, accompanied by exceptional durability exceeding 100 h at −100 mA cm−2. Theoretical analyses indicate that the PtO bonds confer stability to the Pt atoms, facilitating the efficient adsorption of protons and the subsequent desorption of hydrogen. The prepared Pt-SAs/EVG can also be directly employed as the cathode to afford stable operation at 0.5 A cm−2 in a proton exchange membrane electrolyzer cell. This study offers novel insights into enhancing the performance of SACs for industrial applications in electrocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.