Abstract
Developing stable and efficient photocatalysts for H2 production under visible light is still a big challenge. In this work, a novel covalent organic polymer (COP)-based photocatalyst with trace ending groups was prepared by the efficient irreversible kinetic coupling reaction, i.e., nickel(0)-catalyzed Yamamoto-type Ullmann cross-coupling, using pyrene as electron donor and countpart, e.g., phenanthrolene, benzene, pyrazine, as electron acceptor. The newly developed optimal photocatalyst (termed as COP-TP3:1) has a 14-fold improvement in the H2 evolution rate from 3 to 42 μmol h-1 under visible light compared with the sample without donor-acceptor structure. Moreover, COP-TP3:1 also performs excellent photocatalytic activity under different water quality (deionized water, municipal water, commercial mineral water, and simulated seawater (NaCl 3 wt %)). Significantly, ignored decrease in H2 evolution can be observed after 20 hours cycling H2 production, and the performance is only reduced by about 7% even after discontinuous cycles of photocatalysis and storage for a month. The donor-acceptor units with trace ending groups contribute to suppress electron-holes recombination kinetics and the N coordination sites in electron-acceptors conduce to anchor Pt (as the cocatalyst) onto the surface of photocatalyst, both of which are conducive to the outstanding photocatalytic activity and stability. Accordingly, this work can provide guidance to design a stable and efficient photocatalyst by copolymerization for visible-light-driven H2 production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.