Abstract
Synthesizing a stable and efficient photocatalyst has been the most important research goal up to now. Owing to the dominant performance of g-C3N4 (graphitized carbonitride), an ordered assemble of a composite photocatalyst, Zn-Ni-P@g-C3N4, was successfully designed and controllably prepared for highly efficient photocatalytic H2 evolution. The electron transport routes were successfully adjusted and the H2 evolution was greatly improved. The maximum amount of H2 evolved reached about 531.2 μmol for 5 h over Zn-Ni-P@g-C3N4 photocatalyst with a molar ratio of Zn to Ni of 1:3 under illumination of 5 W LED white light (wavelength 420 nm). The H2 evolution rate was 54.7 times higher than that over pure g-C3N4. Moreover, no obvious reduction in the photocatalytic activity was observed even after 4 cycles of H2 production for 5 h. This synergistically increased effect was confirmed through the results of characterizations such as XRD, TEM, SEM, XPS, N2 adsorption, UV-vis DRS, transient photocurrent, FT-IR, transient fluorescence, and Mott-Schottky studies. These studies showed that the Zn-Ni-P nanoparticles modified on g-C3N4 provide more active sites and improve the efficiency of photogenerated charge separation. In addition, the possible mechanism of photocatalytic H2 production is proposed.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.