Abstract
In this article, ultrasound-modulated two-fluid (UMTF) atomization of viscous Newtonian liquids at a lower ultrasonic frequency (25 kHz) is compared to that at fundamental frequencies of 54 and 110 kHz. The experimental data obtained show a shift to smaller drop sizes at a higher air velocity and a larger ratio of air-to-liquid mass flow rate, consistent with those obtained previously at the higher fundamental frequencies. Also consistent with earlier findings, the drop-size distribution becomes narrower as liquid viscosity increases. The experimental results of drop-size distribution are consistent with the theoretical predictions of greater-amplitude growth rates for the capillary waves generated by higher (third and above) harmonics than by the first and second harmonics based on the modified Taylor’s dispersion relation. However, since the harmonics differ in frequency by 25 kHz only, more than one higher harmonic (up to fifth) make significant contributions in UMTF atomization. Compared to the acoustic-modulated pressure atomization that also operates at 25 kHz, the UMTF atomization requires an ultrasonic drive two orders of magnitude smaller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.