Abstract
A resonant liquid capillary wave theory which extends Taylor's dispersion relation to include the sheltering effect of liquid surface inclination caused by air flow is presented. The resulting dispersion curves are compared to new experimental results of how drop-size and size distributions vary with surface tension and air velocity in both airblast and ultrasound-modulated twin-fluid atomization of liquids with a constant kinematic viscosity of 2 cSt. Good agreements between the theoretical predictions of relative growth rates of the capillary waves and the experimental results of drop-size and size distributions led to the conclusion that Taylor-mode breakup of capillary waves plays a very important role in twin-fluid (airblast) atomization of a liquid jet. Thus, the ultrasound-modulated twin-fluid atomization not only verifies the capillary wave mechanism but also provides a means for controlling the drop-size and size distributions in twin-fluid atomization, which has a variety of applications in fuel combustion, spray drying, and spray coating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.