Abstract

Goal: To enhance endovascular navigation using surgical guidewires and the use of ionizing radiation, we demonstrate a method for ultrasonic localization of wires with diameters less than the wavelength of ultrasound in the medium. Methods: Nitinol wires with diameters ranging from 50 μm to 250 μm were imaged ultrasonically in a 0.25-in-diameter water-filled tube in a gelatin medium. Imaging frequencies were 5 MHz, 7.5 MHZ, and 10 MHz. Results: For the full range of diameters traversing the phantom, the wires were localized successfully via visual inspection of both regular and difference ultrasound images. Similarly, two convolutional neural networks were trained, and both achieved an accuracy of over 95%. Conclusions: Wires with diameters as small as 50 μm were localized successfully in a water-based gelatin phantom, indicating the potential use of ultrasound to enhance endovascular navigation and surgical treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.