Abstract

Ultrasound‐induced mechanoluminescence (USML) of Erbium‐doped CaZnOS is reported. Using the fluorescence intensity ratio of the 2H11/2, 4S3/2 → 4I15/2 transitions of Er3+ allows for simultaneous temperature mapping at an absolute sensitivity of 0.003 K−1 in the physiological regime. The combination of USML, local heating, and remote read‐out enables a feedback and response loop for highly controlled stimulation. It is found that ML is a result of direct energy transfer from the host material to Er3+, giving room for adapted spectral characteristics through bandgap modulation. ML saturation at high acoustic power enables independent control of local light emission and ultrasonic heating. Such USML materials may have profound implications for optogenetics, photodynamic therapy and other areas requiring local illumination, heating, and thermometry simultaneously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.