Abstract

Ultrasound scans were acquired from a common carotid artery in a patient with an early atherosclerotic plaque forming a mild asymmetrical stenosis. The 3D vascular geometry of the diseased arterial segment was reconstructed from a series of 2D cross-sectional images, and computational meshes for the flow and wall domains were developed. Numerical flow simulations incorporating coupled fluid–solid interaction were implemented using flow and pressure waveforms measured in vivo. The effects of wall distensibility were investigated by comparing the predictions obtained with different wall compliance, one with ‘natural’ compliance and another with a stiffer wall. Limited flow separation was predicted in the post-stenotic zone. The non-uniform thickness of the diseased wall restricted the wall motion locally and re-distributed the stress, giving raised concentrations at the plaque shoulders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.