Abstract

Robotic minimally invasive surgery (MIS) has changed numerous surgical techniques in the past few years and enhanced their results. Haptic feedback is integrated into robotic surgical systems to restore the surgeon's perception of forces in response to interaction with objects in the surgical environment. The ideal exact emulation of the robot's interaction with its physical environment in free space is a very challenging problem to solve completely. Previously, we introduced the surgical robotic platform (SRP) with a novel concentric connector joint (CCJ). This study aims to develop a haptic control system that integrates an active constraint controller into a surgical robot platform. We have successfully established haptic feedback control for the surgical robot using constraint control and inverse kinematic relationships integrated into the overall positioning structure. A preliminary feasibility study, modelling, and simulation were presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.