Abstract
Optical activity requires chirality and is a paradigm for chirality. Here, we present experiments on its mechanical counterpart, acoustical activity. The notion “activity” refers the rotation of the linear polarization axis of a transversely polarized (optical or mechanical) wave. The rotation angle is proportional to the propagation distance and does not depend on the orientation of the incident linear polarization. This kind of reciprocal polarization rotation is distinct from nonreciprocal Faraday rotation, which requires broken time-inversion symmetry. In our experiments, we spatiotemporally resolve the motion of three-dimensional chiral microstructured polymer metamaterials, with nanometer precision and under time-harmonic excitation at ultrasound frequencies in the range from 20 to 180 kHz. We demonstrate polarization rotations as large as 22° per unit cell. These experiments pave the road for molding the polarization and direction of elastic waves in three dimensions by micropolar mechanical metamaterials.
Highlights
Optical activity requires chirality and is a paradigm for chirality
In this Letter, we report the experimental observation of the phenomenon of acoustical activity in three-dimensional (3D) chiral polymer metamaterials by direct spatiotemporal imaging at ultrasound frequencies, using cross-correlations of optical microscopy images taken under synchronized stroboscopic illumination
Let us start by recalling that effects of chirality are neglected in mechanics on the level of textbook linear Cauchy elasticity[31]
Summary
Optical activity requires chirality and is a paradigm for chirality. Here, we present experiments on its mechanical counterpart, acoustical activity. In the presence of optical activity[4,7] or acoustical activity[27,28,29], an incident transverse linear polarization of a propagating wave rotates: the eigenpolarizations of the chiral medium are not linear but rather circular, with a lifted degeneracy between left- and right-handed circular modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.