Abstract

The strain Serratia marcescens N10612 is used to perform the bioconversion of 1-(3-hydroxyphenyl)-2-(methyamino)-ethanone (HPMAE) to (R)-phenylephrine ((R)-PE), which is an ephedrine drug substitute. The use of an ultrasound approach is found to improve the efficiency of the (R)-PE bioconversion. The optimization of the (R)-PE bioconversion is carried out by means of statistical experiment design. The optimal conditions obtained are 1.0mM HPMAE, 18.68g/L glucose and ultrasound power of 120W, where the predicted specific rate of the (R)-PE bioconversion is 31.46±2.22 (ìmol/h/g-cells) and the experimental specific rate is 33.27±1.46 (ìmol/h/g-cells), which is 3-fold higher than for the operation under ultrasound power of 200W (11.11ìmol/h/g-cells) and 4.3-fold higher than for the shaking operation (7.69ìmol/h/g-cells). The kinetics study of the bioconversion also shows that under the ultrasound operation, the optimal rate (Vmax) of the (R)-PE bioconversion increases from 7.69 to 11.11 (μmol/h/g-cells) and the substrate inhibition constant (KSi) increases from 1.063mM for the shaking operation to 1.490mM for ultrasound operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.