Abstract

Oxidative degradation of 2,4-dinitrotoluenes in aqueous solution was executed using persulfate combined with semiconductors motivated by ultrasound (probe type, 20 kHz). Batch-mode experiments were performed to elucidate the effects of diverse operation variables on the sono-catalytic performance, including the ultrasonic power intensity, dosage of persulfate anions, and semiconductors. Owing to pronounced scavenging behaviors caused by benzene, ethanol, and methanol, the chief oxidants were presumed to be sulfate radicals which originated from persulfate anions, motivated via either the ultrasound or sono-catalysis of semiconductors. With regard to semiconductors, the increment of 2,4-dinitrotoluene removal efficiency was inversely proportional to the band gap energy of semiconductors. Based on the outcomes indicated in a gas chromatograph-mass spectrometer, it was sensibly postulated that the preliminary step for 2,4-dinitrotoluene removal was denitrated into o-mononitrotoluene or p-mononitrotoluene, followed by decarboxylation to nitrobenzene. Subsequently, nitrobenzene was decomposed to hydroxycyclohexadienyl radicals and converted into 2-nitrophenol, 3-nitrophenol, and 4-nitrophenol individually. Nitrophenol compounds with the cleavage of nitro groups synthesized phenol, which was sequentially transformed into hydroquinone and p-benzoquinone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.